Ultraviolet filters in stomatopod crustaceans: diversity, ecology and evolution.
نویسندگان
چکیده
Stomatopod crustaceans employ unique ultraviolet (UV) optical filters in order to tune the spectral sensitivities of their UV-sensitive photoreceptors. In the stomatopod species Neogonodactylus oerstedii, we previously found four filter types, produced by five distinct mycosporine-like amino acid pigments in the crystalline cones of their specialized midband ommatidial facets. This UV-spectral tuning array produces receptors with at least six distinct spectral sensitivities, despite expressing only two visual pigments. Here, we present a broad survey of these UV filters across the stomatopod order, examining their spectral absorption properties in 21 species from seven families in four superfamilies. We found that UV filters are present in three of the four superfamilies, and evolutionary character reconstruction implies that at least one class of UV filter was present in the ancestor of all modern stomatopods. Additionally, postlarval stomatopods were observed to produce the UV filters simultaneously alongside development of the adult eye. The absorbance properties of the filters are consistent within a species; however, between species we found a great deal of diversity, both in the number of filters and in their spectral absorbance characteristics. This diversity correlates with the habitat depth ranges of these species, suggesting that species living in shallow, UV-rich environments may tune their UV spectral sensitivities more aggressively. We also found additional, previously unrecognized UV filter types in the crystalline cones of the peripheral eye regions of some species, indicating the possibility for even greater stomatopod visual complexity than previously thought.
منابع مشابه
Evolution of anatomical and physiological specialization in the compound eyes of stomatopod crustaceans.
Stomatopod crustaceans have complex and diverse visual systems. Among their many unique features are a specialized ommatidial region (the midband) that enables the eye to have multiple overlapping visual fields, as well as sets of spectral filters that are intercalated at two levels between tiers of photoreceptors involved in polychromatic color vision. Although the physiology and visual functi...
متن کاملFiltering and polychromatic vision in mantis shrimps: themes in visible and ultraviolet vision.
Stomatopod crustaceans have the most complex and diverse assortment of retinal photoreceptors of any animals, with 16 functional classes. The receptor classes are subdivided into sets responsible for ultraviolet vision, spatial vision, colour vision and polarization vision. Many of these receptor classes are spectrally tuned by filtering pigments located in photoreceptors or overlying optical e...
متن کاملBiological Sunscreens Tune Polychromatic Ultraviolet Vision in Mantis Shrimp
VIDEO ABSTRACT Stomatopod crustaceans, or mantis shrimp, are renowned for their complex visual systems. Their array of 16 types of photoreceptors provides complex color reception, as well as linear and circular polarization sensitivity [1-6]. The least-understood components of their retina are the UV receptors, of which there are up to six distinct, narrowly tuned spectral types [4]. Here we sh...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of experimental biology
دوره 218 Pt 13 شماره
صفحات -
تاریخ انتشار 2015